Telegram Group & Telegram Channel
Artificial life forms в компьютерных симуляциях

в выходные закончил обещанный обзор статьи Sakana AI, который давно обещал сделать, прошу прощения! свободного времени мало, и становится только меньше. а текст вырос в лонгрид. пробно опубликовал его на хабре — иллюстрации тут сильно помогают. если вы там бываете, буду рад плюсам и комментариям. а ниже саммари для вас любимых, погнали 👽

Рисерчеры из Sakana AI, которые до этого наделали много шума со своим ИИ-ученым, автономно генерирующим правдоподобные научные статьи, исследуют разные области науки, где ИИ может дать заметный толчок. поиск искусcтвенных форм жизни в компьютерных симуляциях оказался одной из них. мотивация для всей области следующая

— изучать жизнь не только какой мы ее знаем, но и такой какой она могла бы быть
— ну и создать голема, пускай цифрового, потому что это давняя мечта любого алхимика

я до этого рассказывал про игру “Жизнь” Конвея, где поиск своеобразных форм жизни (глайдеров, осцилляторов и космических кораблей) происходит уже 54 года силами энтузиастов. при этом “Жизнь” — только частный случай подобных симуляций, есть более сложные, и намного менее исследованные: Boids, Lenia, ParticleLife, Neural Cellular Automata и другие, отличающимися правилами перехода пикселей из живых в мертвые и обратно, детали со ссылками статье

ключевая проблема в том, что с такими эволюционирующими хаотическими системами очень сложно предсказывать как они будут развиваться. и еще сложнее специально задать условия, которые приведут к интересным результатам, например зарождению той самой "жизни", как бы вы ее не определяли. при этом у каждой симуляции, заданной даже простыми правилами, есть десятки тысяч комбинаций параметров (соседи не в квадрате, а в круге, погибает не при 4 соседях а при 5, и так далее). то есть мало того, что нужно эти симуляции нужно просчитывать на тысячи шагов времени вперед, так нужно это делать для тысяч комбинаций входных параметров каждой из них, что превращает задачу поиска интересных форм эволюции в них сопоставимой по относительным масштабам поиску внеземного разума в открытом космосе

и вот тут на помощь пришел ИИ. Sakana взяли опен-сорсную модель CLIP (Contrastive Language–Image Pre-training) от openAI, которая была обучена для генерации текстовых описаний изображений в духе "на этой фотографии три человека стоят у барной стойки". это позволило исследователям программировать поиск "жизни" текстом, то есть буквально “ищи изображения похожие на клетки под микроскопом” или "нечто похожее на скопления нейронов". и она нашла!

такой подход авторы назвали ASAL — Automated Search for Artificial Life, и он позволил в каждой из упомянутых симуляций найти новые формы жизни, иногда удивительно похожие на биологические объекты — клетки, вирусы, бактерии, скопления нейронов. другое направлений исследований — поиск симуляций, где сложность форм жизни продолжает расти со временем неограниченно, прямо как в нашей с вами. здесь был предложен метод сведения этой сложности, которая очень плохо формализуема классическими алгоритмами, к численным метрика в пространстве эмбеддингов CLIP

при этом все описанные выше симуляции определяются очень простыми правилами двумерного мира и ничего не знают о биологии, поэтому случайное образование кластеров пикселей, сильно похожих на бактерии и вирусы — конечно может оказаться невероятным совпадением или артефактом постановки эксперимента (что искали в хаотичной системе, то и нашли), но также могут обозначить границы нового раздела науки, изучающего внутреннюю динамику этих микромиров, которые могут оказаться не менее богатыми, чем наш собственный (если поддерживать вычисления пару миллиардов лет)

мой полный текст: https://habr.com/ru/articles/879230/
ссылка на оригинальную статью и гитхаб

#AI #automated_research #evolution #complexity



tg-me.com/levels_of_abstraction/84
Create:
Last Update:

Artificial life forms в компьютерных симуляциях

в выходные закончил обещанный обзор статьи Sakana AI, который давно обещал сделать, прошу прощения! свободного времени мало, и становится только меньше. а текст вырос в лонгрид. пробно опубликовал его на хабре — иллюстрации тут сильно помогают. если вы там бываете, буду рад плюсам и комментариям. а ниже саммари для вас любимых, погнали 👽

Рисерчеры из Sakana AI, которые до этого наделали много шума со своим ИИ-ученым, автономно генерирующим правдоподобные научные статьи, исследуют разные области науки, где ИИ может дать заметный толчок. поиск искусcтвенных форм жизни в компьютерных симуляциях оказался одной из них. мотивация для всей области следующая

— изучать жизнь не только какой мы ее знаем, но и такой какой она могла бы быть
— ну и создать голема, пускай цифрового, потому что это давняя мечта любого алхимика

я до этого рассказывал про игру “Жизнь” Конвея, где поиск своеобразных форм жизни (глайдеров, осцилляторов и космических кораблей) происходит уже 54 года силами энтузиастов. при этом “Жизнь” — только частный случай подобных симуляций, есть более сложные, и намного менее исследованные: Boids, Lenia, ParticleLife, Neural Cellular Automata и другие, отличающимися правилами перехода пикселей из живых в мертвые и обратно, детали со ссылками статье

ключевая проблема в том, что с такими эволюционирующими хаотическими системами очень сложно предсказывать как они будут развиваться. и еще сложнее специально задать условия, которые приведут к интересным результатам, например зарождению той самой "жизни", как бы вы ее не определяли. при этом у каждой симуляции, заданной даже простыми правилами, есть десятки тысяч комбинаций параметров (соседи не в квадрате, а в круге, погибает не при 4 соседях а при 5, и так далее). то есть мало того, что нужно эти симуляции нужно просчитывать на тысячи шагов времени вперед, так нужно это делать для тысяч комбинаций входных параметров каждой из них, что превращает задачу поиска интересных форм эволюции в них сопоставимой по относительным масштабам поиску внеземного разума в открытом космосе

и вот тут на помощь пришел ИИ. Sakana взяли опен-сорсную модель CLIP (Contrastive Language–Image Pre-training) от openAI, которая была обучена для генерации текстовых описаний изображений в духе "на этой фотографии три человека стоят у барной стойки". это позволило исследователям программировать поиск "жизни" текстом, то есть буквально “ищи изображения похожие на клетки под микроскопом” или "нечто похожее на скопления нейронов". и она нашла!

такой подход авторы назвали ASAL — Automated Search for Artificial Life, и он позволил в каждой из упомянутых симуляций найти новые формы жизни, иногда удивительно похожие на биологические объекты — клетки, вирусы, бактерии, скопления нейронов. другое направлений исследований — поиск симуляций, где сложность форм жизни продолжает расти со временем неограниченно, прямо как в нашей с вами. здесь был предложен метод сведения этой сложности, которая очень плохо формализуема классическими алгоритмами, к численным метрика в пространстве эмбеддингов CLIP

при этом все описанные выше симуляции определяются очень простыми правилами двумерного мира и ничего не знают о биологии, поэтому случайное образование кластеров пикселей, сильно похожих на бактерии и вирусы — конечно может оказаться невероятным совпадением или артефактом постановки эксперимента (что искали в хаотичной системе, то и нашли), но также могут обозначить границы нового раздела науки, изучающего внутреннюю динамику этих микромиров, которые могут оказаться не менее богатыми, чем наш собственный (если поддерживать вычисления пару миллиардов лет)

мой полный текст: https://habr.com/ru/articles/879230/
ссылка на оригинальную статью и гитхаб

#AI #automated_research #evolution #complexity

BY уровни абстракции




Share with your friend now:
tg-me.com/levels_of_abstraction/84

View MORE
Open in Telegram


LEVELS_OF_ABSTRACTION Telegram Group Telegram | DID YOU KNOW?

Date: |

However, analysts are positive on the stock now. “We have seen a huge downside movement in the stock due to the central electricity regulatory commission’s (CERC) order that seems to be negative from 2014-15 onwards but we cannot take a linear negative view on the stock and further downside movement on the stock is unlikely. Currently stock is underpriced. Investors can bet on it for a longer horizon," said Vivek Gupta, director research at CapitalVia Global Research.

What Is Bitcoin?

Bitcoin is a decentralized digital currency that you can buy, sell and exchange directly, without an intermediary like a bank. Bitcoin’s creator, Satoshi Nakamoto, originally described the need for “an electronic payment system based on cryptographic proof instead of trust.” Each and every Bitcoin transaction that’s ever been made exists on a public ledger accessible to everyone, making transactions hard to reverse and difficult to fake. That’s by design: Core to their decentralized nature, Bitcoins aren’t backed by the government or any issuing institution, and there’s nothing to guarantee their value besides the proof baked in the heart of the system. “The reason why it’s worth money is simply because we, as people, decided it has value—same as gold,” says Anton Mozgovoy, co-founder & CEO of digital financial service company Holyheld.

LEVELS_OF_ABSTRACTION Telegram Group from ar


Telegram уровни абстракции
FROM USA